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SUMMARY

Modern nymerical metheds for the optimization of large dis-
cretized systems are now well developed and highly ¢fficient in
the case of thin walled c¢lastic structures mcueled by finite
elements. However, this 1s not yet true for structures whose
components are subject simultaneously to bending and extension
loads. In this paper, the idea of Generalized Optimality Cri-
terion (GOC), set forth in previous final scientific reports
for bar, membrane and pure bending elements, is extended tu deul
with general beam and flat shell elements. The modifications

brought to the GOC result in explicit approximations tfor the

behavior constraints that are still correct up to the first order,

but that exhibit a more complex algebraic form. Indeed these

explicit expressions are no longer merely linear in the reciprocal

design variables. However they continue to be additively sepa-
rable and therefore, dual methods remain fully applicable, just
as in the original statecment of the GOC approach. Numerical

examples will be offered to demonstrate the efficiency of the

method presented.
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INTRODUCTION ‘

The optimum design of any significant structure is the result

R .

of a delicate compromise between many complex factors. Some are

rational and can be quantified, such as the strength of the

e

structure, its natural frequencies, its weight, ... Some are
just as rational but are difficult to quantify, such as the ex-
perience of the designer in a given technology. Some others arc
much less rational, like styling, but are just as important for
the final goal of the process, which 1s the marketing. Naturally
a good designer considers structural optimization as a technique
that should take into account all possible aspects of the design.

Consequently the designers are often reluctant to the concepts

of structural optimization developed in connection with finite

element programs.

However a more detailed examination of the design process
leads to isolate a phase that appears frequently, during which
the shape of the structure is more or less frozen and the problem
is limited to giving adequate dimensions to the various members.
Such a situation is often encountered in the aerospace, naval
or automobile industries, where the external shapes are, tou a
large extent, dictated by aero- or hydrodynamic considerations,
or by styling, while internal forms are often determinated by
various other non structural requirements. If the ultimatce gpoal
of the designer can be identified as corresponding to the minimi-
zation of an explicit function of the member sizes, and if the
limitations on the design can be defined as, eventually implicit,
functions of the member sizes too, such as displacements, stresses,
eigenfrequencies, etc..., then the problem is tractable by auto-
matic algorithms. They allow the designer to speed up signifi-
cantly this part of the design process and to explore more sys-

tematically the various feasible designs.

The optimization problems, which in fact should be called
automatic sizing problems, are especially crucial when complex

structural forms are involved, when flexural forces cannot be




neglected, and when composite materials such as reinforced

resins are employed. In these cases it becomes difficult, if
not impossible, for the designer to have an intuitive under-
standing of the structural mechanics that is sufficient to lead
tooptimal sizing of the various members. Turthermore, the de-
signer is most of the time unable to take into account global 1

constraints in the structure, like global flexibility, restric-

tion on displacements, frequencies of vibration, global buckling
modes, etc... It is only possible to verify a posteriori that ‘
such constraints are satisfied. Again these global constraints
become more important in the context of highly, indeterminate

structures. In the aerospace industry, the necessity of desi- g

gning high performance structures has motivated significant re-

. . s . 1
search efforts to derive algorithms permitting a rapid and svs- |
tematic exploration of the design space to determine the optimum

, material utilization.

It is worth pointing out that optimization methods should
be considered as especially useful in the preliminary design
phase. 1Using them when the design is practically frozen, with
the hope of an ultimate improvement, is often disappointing.
This i+ due to the fact that the optimization of a detailed design
implies the formulation of a large number of constraints, some

of which are not easily quantified. At the preliminary design

stage, however, the constraints are usually more global and

therefore more easily handled by the available formulations.

The structural optimization problem considered in this report
consists of the weight minimization of a finite element model
with fixed geometry and material properties. The design variables
are taken as the transverse sizes of the structural members,
namely, the cross-sectional areas of bar and beam elements and

the thicknesses of membrane, plate and flat shell elements.

The mathematical programming problem to be solved has the fol-

lowing form :

n
minimize W= .1 1. a. ()

subject to hj(a) >0 jo=1,m (2) ;




The ai's denote the n design variables. They correspond to
member sizes of either individual finite elements, or, if
design variable linking is used, of groups of finite c¢lements.
The structural weight W is a linear objective function, because
the ﬁi's are constant coefficients representing the specific
weight times either the element length (bars and beams) or the
element area (membranes, shear panels, plates and flat shells).
The inequalities (2) are the behavior constraints, which impose
limitations on quantities describing the structural response,
for example, the stresses and displacements under multiple
loading cases, the natural frequencies, the buckling loads,
etc... The design variables are also subjected to the side
constraints (3), where 3y and 51 are lower and upper limits that

reflect fabrication and analysis validity considerations.

Standard minimization techniques can be applied to the non-
linear programming problem (1-3). However this problem exhibits
some characteristics that make it complicated when practical
structural design applications are considered. The essential
difficulty arises from the implicit nature of the behavior
constraints (2), in that their precise numerical evaluation for
each particular design requires a complete finite element ana-
lysis. Since the solution scheme is iterative, it involves a
large number of structural reanalyses. Therefore the computa-
tional cost often becomes prohibitive when large structural
systems are dealt with. However a powerful design procedure
has now emerged, which consists in replacing the initial problem
with a sequence of simple explicit problems. 1In the next sec-
tion this approach will be briefly reviewed by restricting the
formulation to thin walled structures idealized by bar/membrane
elements. A much more detailed presentation can be found in a
previous report [1 ]J]. It will be shown that the behavior cons-
traints can be approximated either by using virtual load consi-
derations (optimality criteria approach) or by using first order
Taylor series expansion with respect to the reciprocal desiyn
variables (mathematical programming approach). Applying a dual
solution scheme to each explicit problem generated in sequence
naturally introduces the concept of a generalized optimality

criterion.
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Subsequently sections 3 and 4 will be concerned with struyc-
tural models that are capable of carrying flexural forces. For

beams and plates in pure tending, adequate intermediate varia-

bles can be selected, in terms of which high quality explicit

approximations for the behavior constraints can still be ypene-

—

rated by linearization. The idea of generalized optimality
criterion remains fully valid and it keeps 1ts interpretation

in terms of energy densities in the structural members. Section
3 is a summary of results presented in a previous report (ref.

{2 ], section 6). !

The essential problem is addressed in section 4. It consists
of the establishment of the generalized optimality criterion
approach in the general case where the structural members work
both in extension and flexion (beam and flat shell clements).

For displacement constraints, it is no longer possible to select
4 suitable intermediate variable for the linearization process,
however, the virtual load procedure permits obtention of high
quality, first order explicit approximations of the behavior
constraints. It will also be shown how to proceed for stress,

frequency and buckling constraints.

The explicit approximations still exhibit a separable alge-
braic form and therefore dual methods remain appliicable. However

some difficulties might happen due to the lack of convexity in

the explicit subproblem. Section 5 will describe how to solve
the explicit subproblems by using dual methoeds. Iinally some
applications will be offered in section 6 to illustrate the powcer

and generality of the appruvach presented.
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2. GENERALIZED OPTIMALITY CRITERIOMN FOR THLIN WALLED STRUCTURES

This section summarizes some results obtained in a previous
work [l ] for structural models made up of bar, membrane and
shear panel elements, which are quite adequate for idealizing
thin walled structures subjected mainly to extension loading.
For this class of finite element models, the structural stif-

fness matrix exhibits a linear form in the design variables

n
K= .5, K. = .r, a. K. (%)

where Ki’ a matrix of constants, represents the stiffness matrizx

of the ith element when a; = 1. For simplicity, the following
discussion is restricted to problems involving constraints on
static stresses and displacements, in which case the behavior
constraints (2) can be written

. - .- R E: = D
hJ(a) uJ uJ(a) 0 (")

where Gi denotes an upper bound to a response quantity uj(u)

(stress; nodal displacement, relative displacement).

Most of the optimality criteria approaches (e.g. | 3 1), as
well as the generalized optimality criterion (GOC) set forth in
Reft. [ ], use the virtual load technique to generate explicit
approximations of the stress and displacement constraints. ln-
troducing a virtual load vector conjugated to the response quan-
tity uj (unit load for a nodal displacement), 1t follows that
uj can be expressed as the sum of the contributions of each fi-

nite element :

with

e




O,

In thesc expressions 4 and qj are respectively the real and
virtual displacement vectors and Ri is the element stiffnens
matrix appearing in (4). It can be seen from (7) that the ~oet -
fictents (‘ij are related to the virtual straln concrvyy densities
in the structural members. The cij's are constant coefficients
in the case of a statically determinate structure, so that (6)
represents then the exact explicit form of the response quan-
tity Uy In the case of a statically indeterminate structure,
the cij’s depend implicitly on the design vacilablus, because
structural redundancy produces redistribution of the internal
forces when the member sizes are modified. Therefore the tol-

lowing explicit constraints
"N - n 1
S N LI (8)

constitute 1n general approximate forms of the original cons-
traints (5). As shown in Ref. |1 ], the basic idea in the op-
timality criteria approach can be viewed as transforming the
initial implicit problem into & sequence of explicit subproblems.
Each explicit problem results from replacing the behavior cons-

traints (2) by their arproximate forms (8).

On the other hand, the mathematical programming approach to
structural optimization, after a period of unefficiency, has
finally evolved into a powerful and now well established design
procedure which is alsc based upon explicit approximations ot
the behavior constraints [4, 5, 6 J. The key idea is to linca-
rize the behavior constraints with respect to the reciprocal

design variables
_ .
x.—a (9)

Justification for this change of variables lies in the fact
that the constraint surfaces can be shown to be very shallow
and close to planes in the reciprocal design variable space.
Therefore the linearized forms of the constraints are usually
high quality approximations. They are obtained by usinpg first
order Taylor series expansion in terms of the reciprocal va-

riables X,

*_J---.---ﬂ-I-n-...-..--_m_mgm.h“mm“m_n




ﬁ.(x w. - 9y
) uJ [uJ

. 0 -
where the upperscript denotes quantities evaluated at

the

. . O . .
actual design point x , where the structural analvsis s por-

formed. Nc:ie that the finite element analysis capabiiti

ty

include auxiliary sensitivity analyses for evaluating the

partial derivatives of the response quantities. Most often

well known pseudo-loads technique is employed [7 ].

lt has been shown in a previous report [ | | that the

approximations of the behavior <constraints used in both

et

Prst

the

cxplicit

the

optimality c¢riteria and mathematical programminp approaches (Lqs

8 and 10, respectively) are ldentical. Indeed the virtnal

energy densities Cij emrloved in the optimalitv criteria

aches are nothing else that the gradlents of the response

tities with respect to the reciprocal variables

au .
J

>

i -~ Bxi

Furthermore the definition of the cij's following from

tual load technique (see Eq. 7) clearly indicates that

Therefore (10) can be rewritten

) - n
ﬁj(x) u. = . L O

the

Bl rdin
app ro-

quan-

(11

vir-

(12

(1)

which is equivalent to (8) when recast in terms of the direct

variables a, . It is thus apparent that a unified approach

structural weight minimization of finite element systems

emeryged, which consists in replacing the initial problem

with a sequence of explicit approximate - or linearized

blems of the following form

n
minimize W = .1 9. a,
121 1 1
n Ci.
subject to u. - .L, —— = 0
; ] 12 a.
i
a. 2 a, 2 a

to
has
(1-3)

- pro-
(1
(15
(16)




The GOC statement results from writing the KUHN-TUCKER optimality
conditions for the problem (14-16). This yiclds an explicit
expression tor the design variables ay in terms ot the lapransian
multipliers ri associdated with the behavior constratnts (175)

(see Retf |6, B | for more details)

1 m 1/2 2 m , 2

a. = (— .5 c.. r.) 1f ¢.a, X . c.. r. * ..a (17)
1 (i j21 1] 3 1—1 1=1 1) ] 1
s m “

a, = a. if ) c.. r. < ..a’ (18
1 -1 i=1 1] ) 1-1

a. = a. if .? c.. r, > J.aT (19)

1 1 JEI 1] ]

Of course the lagrangian multipliers must be nonnegative, more

precisely, they must satisfy the complementary conditions

n Ci. _
r. > 0 if Lo Lo 0. (20)
3 1=1 a, ]
n C. . _
r. = 0 if L, — 4. (21)
J i=] a; i

In order to compute the lagrangian multipliers satisfying (20-
21), an interesting approach is to resort tc dual methods, which
leads to maximize the lagrangian function considered as a func-
tion of the lagrangian multipliers - or dual varjiables - only
(see Refs [ 1, 6, 8 ] and section 5). Once the solution of the
dual problem has been found, the corresponding optimal design
variables are easily computed from the explicit optimality cri-
teria relations (17-19). Note that the design variables can be
svparated into a group of active (or free) variabhles (see lq. 17)
and a group of passive (or fixed) variables (see Eqs. 18 and 19).
This subdivision into active and passive design variable groups
is classical in the optimality criteria approaches [3, 9 1. It
corresponds to the fact that the dual space - i.e. the space of
the lagrangian multipliers rj - is partitioned into several re-
gions separated by planes across which the second derivatives

of the dual function are discontinuous [6, 8 ].

AN




The whole process of combining the linearization of the
behavior constraints with respect to the reciprocal design
variables and a dual solution scheme can be viewed as a gene-
ralization of the optimality criteria approaches. It is dmpor-
tant to mention that this basic approach of converting the
initial problem into a sequence of explicit subproblems is now
widely recognized [6, 10 ] and it 1is routinely e¢mployed for

large scale industrial applications [11 ].
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3. PURL BENDING ELEMENTS

In this section attention is focused on discretized models
made up of pure beam and plate elements subjected to flexural
loads only (for more details, see¢ section 6 of Ref. |2 ]).

The stiffness matrix of such a bending element is usually not
merely proportional to its cross-scctional size and therefore
the optimization strategy reviewed in the previous section must
be modified. The way to deal with a4 beam element subjected to
uniaxial bending depends upon the relationship between the prin-
cipal moment of inertia I and the cross-sectional area a. A
wide variety of situations is taken into consideration by adop-

ting the following relation :

where ¢ 1s a constant that depends only on the shape of the

beam cross—~sectlion and p is a positive number.

Most of the time p 1s taken as #n integer number, equal to
1, 2 or 3. The case p = | correspunds to thin walled beams,
for example, sandwich beams, pipes with fixed diameter and va-
riable thickness, etc... The COC approach of section 2 remains
then fully applicable, since the stiffness matrix continues to
be linear in the design variables. The case p = 2 is that of
beams with uniformly varying cross-section. The shape of the
cross-section is kept unvariant while its area is modified during
redesign (dilatation cor contraction). Finally the case p = 3
is concerned with beams having full cross-section whose height
viries while other sizes are fixed. For a beam subjected to
pure bending, the flexural rigidity is proportional to the mo-
ment of inertia and therefore, in 4 tinite element context, the
structural stiffness matrix exhibits the following exnlicit

form in terms of the cross-secctlonal arcas
ali) K. , p >0 (23)

where each matrix Ki is independent of the design variables a,.

[




With regard to plate elements subjected to pure bendiny,

two cases must be distinguished. The first casc 1s that of
sandwich plates with constant core thickness. The sheet thick-
nesses constitute then the design variables. Conscquently the
stiffness matrix continues to depend linearly on the desiun
variables and the GOC relations (17-21) remain fully applicable.
The second case is concerned with full plates with variable
thickness. The stiffness is then proportional to the cube of
the thickness and, in an assembling of plate elements, the re-

lation (22) must be chosen with p = 3.

By assuming that the structural discretization is made up
entirely of elements of the same type, the stiffness matrix
exhibits the form (23), where p takes on the same valuc fo1
each member. In these circumstances, the GOC can be derived
just as in the case of thin walled structures, by adopting a
change of variables tending to reduce the nonlincar character

of the constraints :

I
x. = —
1 p
a,
i
The next step is to linearize the constraints with respect to
the new variables X: which requires gradient evaluation (sec
Eq. 10). Restricting again the discussion to stress and dis-
placement constraints, it is easily shown (see Ref. |2 ]) that
the first order Taylor series expansion (10) reduces to the

form (13), or, when written in terms of the direct variables @

N, - n CiJ - ve
h.(a) : uJ e el 0 (15)
a.
i

The Cij coefficients can be interpreted as the gradients of the
response quantities with respect to the intermediate variables

x; defined in (24), but they can also be related to the virtual

strain eneryies eij in the structural members :

oW




where, by definition,

¢e.. = q K, qi (> 7)

In this connection it should be recognized that virtudal load
considerations could directly be employed to derive the explicit
approximations (25), instead of resorting to first order Taylor

series (see next section).

The optimality criteria equations are very similar to (1/7-
19), provided that care is taken of the exponent p appearing
in (25). The basic redesign relations for the active desipn
variables must read as follows

|

p+l
1 Cij Tj)

P
a. = (_.
1 ﬂi ]

(28)

HEB

where i1t is understood that the dual variables ri (i.e. the
lagrangian multipliers) must satisfy the complembntarity con-
ditions (see Eqs. 20 and 21). A physical interpretation of the
optimality criterion is obtained by introducing the virtual

strain energy densities per unit weight

. S (29)

where eij is defined 1in (27). In terms of the rii's. the opti-

mality criterion (28) takes the "emnergetic" form

| rj cij = constant (30)
In the special case where only one displacement constraint
is specified, the optimality criterion states that the virtual
strain energy density must be the same in each element. In
this simple case, it is possible to solve analytically the ex-

plicit problem and to derive explicit redesign relations in terms

of known quantities. The active design variables can be shown
to be given by
p_ 115
a, = [—— 1 P Pty Pl (31)
1 - k k k £,
i - u 1




3.

while the remaining passive variables are fixed to an upper or

a lower liwit (uo denotes the contribution of thesce passive
variables to the displacement constraint u < u). It is worth
mentioning that (31) 1is well suited for the design of plates

in bending with a single displacement constraint. Since then

p = 3 the redesign relation (31) involves the fourth root of the
coefficients i rather than the third root as employed in

Ref. [12 ] on an intuitive basis. Note also that by takinyg

p = 1 in (31), conventional redesign relations are recoverced,

which were devised for trusses [3 ], sandwich beams {13 | ,cte...

It can be concluded that the generalized optimality criteria
approach can easily be extended to deal with pure bending cle-
ments by defining adequate intermediate variables. High quality
explicit approximations of the behavior constraints can still be
generated and the resulting GOC keeps its interpretation in terms
of energy densities ir the structural members. Seeking the de-
sign variables that satisfy the GOC at each redesign stage can
still be achieved efficiently by resorting to dual methods, be-
cause the explicit approximate problem remalns separable and
strictly convex when expressed in the intermediate design vari-

ables x..
i

"
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4. FLEXLON-EXTENSION KLEMENTS

When flexion and extension loadings act simultaneouslv with
comparable intensity at the element level, the definition (23)
of the stiffness matrix can no longer characterize the structu-
ral model with sufficient accuracy. To help fix ideas, consi-
der a flat shell element made up of a membrane and a plate sta-
cked together. The stiffness matrix of such a tlat shell c¢le-

ment exhibits the form

K. = a. KFI) + a? KF3) (32)
1 L 1 i i
(1) (3) . ;o : i
where Ki and K.l are constant matrices. As a result, 1in

the GOC approach, if the constraints are lincarized with respect
to the reciprocal design variables (9), their first order cxpli-
cit approximations, given by expressions similar to (8), will

be of high quality only if the structural members behave mainliv
in extension. On the other hand, if the bending behavior is
dominant, it is better to adopt the change of variables (24),
yielding first order explicit approximations of the form (25)
(with p = 3). As a matter of fact, the true situation ls usu-~
ally a combination of extension and bending. In a practical
structure, some members work mainly in extension, some in flexion,
and others, simultaneously in flexion and extension. Whence

the idea of using the following explicit approximations, which

should be valid in any situation

(1) (3)
N - noo €y “ij L.
hj(a) Bt uj - 1£] (“a—‘—*-— + —'3—*’) = 0 (33)
1 a.
1
(1 (3)

where the coefficientsc.1i and ¢ are considered as constant

] ij
throughout the redesign phase.

Because it is no longer possible to select appropriate in-
termediate design variables, the explicit approximations (33)
cannot be obtained by merely using first order Taylor scerices
as in the case of pure bending elements. However an essential

requirement is that these approximations remain correct up to




the first order, despite the fact that they do not result from
a strict linearization process. In other words the following

equality must hold :

Jﬁj o th o cgj) Cg?)
2)al(d ) = ‘)—5‘1—(3 ) = - N 5 + 3 '-"~—J—~O A (34)
(a;) (ay)

This condition insures that, at the optimum, the solution tou
the explicit approximate problem satisfies the (first order)
optimality conditions of the real problem, that is, the appro-
ximate and real restraint surfaces have the same tangent plane
(see Fig. 1). As a result, the GOC approach should converye

to a true (at least local) minimum weight design. Tt will be
shown in this section hew such first order explicit approxima-
tions can be obtained tor various types of behavior constraints

and structural models.

4.1. Displacement Constraints

The key idea to obtain explicit approximations of the dis-
placement constraints is to come back to the virtual load pro- X
cedure, which permits decomposing any static response quantity
into the contributions of each element. The expression (b) can

be rewritten in the more general form

T R ¢
. = .= L . . 1
uJ q K qJ 1§l q K1 qJ (35)
On the other hand, it can be proved that the gradient of L is
given by (see Ref. [1 ], p. 74) -
Juj 1ok oK C36)
da, 1 3a, qj 1 33 qj
i i i

Now, for a rather general class of structural models, each ele-~ 3

ment stiffness matrix can be assumed to have the followinpg ex-

plicit form in terms of its design variable [ 14 | i
3
K. = 1. aP g(P) (37)
1 p=l 1 i
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where the matrices Kgp) are independent of the design variables.

Note that most often, at least one of the KfP), p =1, 2, 3, is
2 . . .. . .
zero (for example Kg ) 1s zero 1n the stiffness matrix (32) of

a flat shell element). Introducing (37) itnto (3%), 1t appears

that a convenient explicit approximation of

traint (5) 1is

a displacement cons-

) (
N ( - n 3 Ci?)
h.(a Tu., - L z — - = 0 (38)
J ) ] i2] p=l P
i
where the coefficients

(p) T . (p) 2p ,
L K. . a. 39
€55 (g K. qJ) ay (39)
are assumed to be constant during the current stage. The pra-
dient of this explicit approximate constraint is
JR. 3 p cg?)
S R L, __:%i_ (40)
dai p ag

On the other hand, differentiating (37} and
into (36) shows that

inserting the result

q

; ~ 4
S N LA Ki(p) | (41)

Therefore it can be concluded that the expressions (38) represcent

first order explicit approximations, in that they restitute the

exact values of the constraints and their first partial deriva-
. . . o) . .

tives at the design point a where the structural analysis 1s

made :

- (0
B = ho(a%) =@, - B, f il (42)
'] TET N T s pEl T ’
(a.)
1
aﬁj shy 3 p E?)
L Ja (a ) = 9 .(a ) = p)=l - p+7T (;%)
1 1 .0
(a))

e ST, MR AP



An alternative approach is to employ simple linear approsi-

mations in the reciprocal design variables (9), 1.¢. the first
order Taylor series expansions (10). Then the explicit subpro-
blem exhibits exactly the same form (14-16) as in the case of
thin walled structures and dual methods need not be modificd as
thev will be in section 5. Of course, as previously mentioned,
the convergence of the overall optimization process might be
lowered, or even become unstable, in the case where the bending
behavior is dominant in most of the elements. The reader is re-
ferred to sections 6.1 and 6.5 for numerical cxamples comparing

the explicit approximations (8), (25) and {(38).

4.2. Stress Constraints

The situation is much more delicate for stress constraints
than for displ'acement constraints. In contrast to the case of
thin walled structures modeled by bar and membrane elements, the
stress matrices are no longer constant in the case of flexion-
cxtension elements. For illustration consider again a flat shell
element. The stresses in the upper shect can be computed i1n
terms of the generalized displacements by
'1‘15b))q = ulg‘“) + uéb) (44)

=T, q = (Té"‘) + a

Yk k k

m b . .
where o u( ), oi ) are matrix representations o! the total

k* "k
stress, membrane stress and bending stress tensors in member k,
; m ~(b)
and Fk, Té ), rk
are independent of the design variables. Each displacement com-

are the corresponding stress matrices, which

ponent admits a first order explicit approximation of the form

(see Eq. 33)

(=%

cij
l(a. *
i

e
f
[(iaglie]
[S 1S
Cd o
~

(Y]
cw

1

Therefore, a natural choice for the approximation of a stress

component could be as follows :

B R T
Y =ik Tt T v Al (T Ty (45)
1 a 1 a.

i 1




Al 1
1 5. .
The terms containinag C§W) and a?W) arise frowm the membrane part
, (m) H oL (b) (b)
of the stress Jk_, and those contalining CEE and dii , trom the
bending stress oéb). .
i
The expression (45) 1s still a first order approximation. i
It is no longer separable, but keeps a simple algebraic form (
suitable to specialized algorithms such as those based on dual
methods. However, when considering the true stress limitation
(e.g. upper limit oun the Von Mises stress), the explicit cons- e;
traint becomes much more complicate. For these reasons, and !
before finding something better, it has been decided to follow .
the alternative strategy propoused at the end of section 4.1, |

that 1s, to employ simple line

To compute the gradient of the

the reciprocal variables (9),
Von Mises stress
U = (g~ + 02
ek y
it comes
do BN
ek 1 X
= U 2 —
3x. 2x.l( Yx Uy)ﬂx.
i i
On the other hand, from (44) 1
any stress component T Oy or
Aok o b5q _
Ix, k 3ax.
1 i

where 61

k

4.3. Frequency Constraints

Constraints on natural frequencies usually consist in imposing
lower limits
2 2 .
L. (a) w.,(a) -~ w, 20 = }l,m (49)
i " =] .
L luttmissetn

is the Kronecker symbol.

ar approximations of the form (10).

stress constraint with respect to

we note that, f{rom the equivalent

5 1/
-0y Uy + 3 1xy) (46)
k
fn‘;v a'[xy
+ (2 0y - ox)#x: + 6 Ty S;T—Ik (479
i 1
t follows that the derivative of
1 has the form
Xy
JD
. 48
Sik 2 (4¥)
X
i




They are directly written in terms of the squares of the tre-

quencies, because these quantities naturally appear in the

eigenproblem characterizing the structural modal analysis

)y
K . - weMq. =0 (50)
43 o4 :
In this equation K and M represent the stiffness and mass matri-
ces, and (qj, j = 1l,m) are the modal displacements, i.¢., the
eigenvectors solution of (50), associated with eligenvalues
The structural mass matrix has a linear form in terms of the

design variables :

M=

s

n
M, + M = .%L
i =

where ﬁi and MC are independent of the design variables. Mi

denotes the muss matrix of the ith element when a, = 1. M re-
presents the contribution of the non-structural masses, such as
equipments, fuel, etc... It is well known that the first deri-
vatives of the frequencies with respect to the desipgn variahbles

are given by | see for example Ref. [2], section 4.2 ] : i

amj ) , oM ’
—d = - “~ 5 |
Ja. m. qj(aa. wj Qa.)qj (52) j

1 j i 1 !

where m, is the generalized mass of the jth mode

T
m. = . M . (573)
J qJ qJ
The way to derive first order explicit approximations ot the
frequency constraints is less apparent than for displacement cons-
traints. In this report, guided by the work done in Ref |2 |
(section 4.2), the following decomposition of the eigenvalucs in
terms of the stiffness and mass contributions of cach element will
be used
m. n
2 3y -1 T _ o
wi oo wJ.(l + =) — I, qj(Ki ws M )qj (54) i
) J
where
- T n
m. = . M . = m, - .L M. (55)
i 75 e 9 joToiEr 9 i 9 ’
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represents the cuontribution o!f the non structural masses to the
generalized mass mj (see Eq. 53). By taxiny account of the ex-
plicit definitions (37) ot the stiffness matrices Ki and (51)

of the mass matrices Mo, the Bigh quality expliclit approximations
of the frequency cvnstraints take the form (»8), with

_ 5 m, ,
u. o= oLty =) - .7 (56)
] W . -
J
T .(p) 2=
qt (K. - T M. 4. g,
1 b 5
c.(P)= J i it 1ptlioa b= 1,2,3 (57)
1] ni. i
where dlp = | only if p = 1 ahd is 0 otherwise.
The coefficients ci?) and the moedified limits Gi are frozen to
their values at the current deslgn point. fust as for the dis-

placement constraints, it is easilv verified that the expressions
(38) remain first order explicit approximations satisfying (42,

43). As a matter of fact, they can be interpreted as first order
. . . Z 3 .
Taylor serles expansionsin terms of l/xl, ]/xi. l/xi consldered

as independent variables,

4.4. Buckling Constraints

Just as the natural f{requencies, the critical load factors

Aj are defined through an ctgenproblem
Kq, - +. § q, =0 ("8)

where S represents the geometric stiffness wmatrix and (qj,

j = Il,m) denote the eigenvectors solution of problem (58), asso-
ciated with eigenvalues Aj' e physical meaning of the qi’s

is that of diéplacemcnrs in the jth buckling mode , for a }ri[,—

cal lovad factor \j. The buckling constraints consist in imposing

lower limits on the buckling loads
Voo jo= 1, m (H9)

In this work, the following form ot the oo rvaints will be

adopted :

s ey
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| 1 . .
e - P S S = )
h‘](d) J\j )‘i("‘) U ] Iy m (6H0))

because it has been found that better explicit approximations
are generated when expanding the reciprocal of the buckling

loads rather then the Aj's themselves.

The stiffness matrix K has the form (23). The geometric
stiffness matrix is related to the initial stress state in the
elements and therefore 1t depends implicitly on all the desipn

variables :

5 = .1 . (a)
5 = i, S, (a) (61)
[t is worth recalling that the matrices S, are independent of

the design variables for a statically determinate structure.

As explained in section 5.2 of Ref |2 ], the tirst deriva-

tives of the buckling loads are given by

u\j | K
- = q. (W - . )g. (62)
T I 3a;7 7]

In opposition with the static and dynamic cases previously dis-
cussed, the derivatives appearing in (62) are not directly a-
vailable, because the elements of the geometrical stiffiness ma-

trix are function of the stresses acting in the prebukling state. \
. 3S .o f
Howce ser, by assuming that the terms %—7 are negligible, the gra-
aaj
dients (62) become easily computable. This assumption, which is

typical of optimality criteria approaches for static constraints,
amounts to not taking into account the effects of structural

redundancy :

(2}

= 0 i =1, n (63)

Sl
[+

In this report,the following decomposition of the reciprocal
buckling loads in terms of the contribution of each element will

be used :




I 1 1 - o
e - P . . q . "y
L s, . 12l q] i l|
) N ]
where 1
T 4
] = . 5« thoo
] lJ ll

substituting the explicit definiticn (37) ! the stiftness -

trices Ki into (64) yields the high quality caplicit approxims-

tions of the buckling load constraints +oe) under the form (3H),

with
L_l. = l—- (Hhé)
J v,
)
T .(p
(p)_ 9 E\EI) G 2
c.. = L a7 p [ y ¢ )
1] 2 1
S . L.
) ]
. e o (p) ! e e - -
Again, the coetficlents Lij and the moditiced lTrmits w) are
frozen to their values at the current design point. lTust s

for the displacement and frequencv coastralnts, 1t is ecasilyv ve-

rified that the expressions (38) arve tirst order explicit appro-

ximations of the constraluts (HO), satict-in Ca.,43), provided
that the assumption (63) c¢an be Introdaced inte the gradient

(62) (statical determinacy).

The reason why the buckling constrarnts are treated by ox-

panding the reciprocal criticai loads _see 'g. 64) is that, ter

a thin walled structury, the approximatice (38} takes the lorm
(8), where the coefficients CL renain constaat alonyg the scaline
line. This property, which is‘WUll detailed 1a section 3 ot

Ret | 2 |, has been found very important for the case of stress

and displacement constralnts. CGeometricallyv it means that the

real restraint surtace h,(a) = U is replaced by a tanpent snr-
“ . b . . . .
face hj(a) = 0 at 1ts poulnt of intersection with the scaling

line (see Fig. 3 of Rei. |2 |).
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5. SGLUTLON OF THE EXPLICIT PROBLEM

From the foregoing developments, it appears that, at ecach
stage of the optimization process, the following subprobiem wast

be solved

n
minimize W = .} L., a. (68)
1=1 i 71
>)
n 3 Cix _
subject to .I y, =2« g, (bYy)
120 p=1l p j
i
a. < a, < a.
ii 11 RS dl (70)

Unless the summation on p in (69) is restricted tov a single

value of p (i.e. approx.mation of the form (25) with p = 1, 2

or 3), it is no longer possible to find intermediate variables
li.c. Xy given in (24) | in terms of which the explicit cons-
traints (69) would be linear. Therefore, the primal solution

of problem (68-70) is more difficult to achieve if a gradient
projection type of algorithm is employed as in the mixed method
developed in a previous work for thin walled structures {1, 15 |,
The expressions (69) are still explicit and they continue to ex-
hibit a simple algebraic form. Consequently a peneral purposce op-
timization alpgorithm such as NEWSUMT | 16 | could easily be adapted to
take the constraints (69) 1into accovunt. However, because they
are still additively separable, resorting to dual methods remains
probably the best strategy, just as in the casec of thin walled

structures [ 1, 2, 6, 8 ].

The minimization problem (68-70) can be solved efficiently
as an auxiliary maximization problem in the m lagrangian multi-
pliers rj associated with the explicit behavior constraints (69).

This dual problem rcads as follow | 8 ]

n m
maximlze L(r) = iél Qi ai(r) + le rj gj(r) (71
subject to r. =20 j =1, m (7.0

where gj(r) denote the components of the dual function pradient,

which are equal to the values of the primal constraints

w—.—-—‘
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n . oo
S o) ' - u. (73
b i ; o, [ BT ,"‘ j )
1
The primal wvartables ‘(,L(K') at related to the dual variables r
]
throuph the followin:, quasi-uncounstralngd minimication problyon
{see for example Kot o )
(r)
n n i ci. _
minimize I | o ro(.” . T R u.) (74)
1 1 i 1] il nEd p 3
at
i
subject to  u, = agooay (75)
Because of the separability o! this problem, 1t can be decomposcd
into n one-dimenslional minimizativn protlens ol the form
i)
b (_l
min R , ——— 76
o= {kl 1 pEI p j ( )
a. s a. ¥ a. ' pout
-1 i 1 i
where
(p) i (p)
LA S S R (77)
1 J 1]
Setting to zero the fivst derivative of the+ single variable
\Y) .
function appearing in {76), it is .ecn that the n "active'" de-
sign variables can be c¢btaloned b solwviny the nonlinear alge-
braic ejuations
A
3 (i
By e ® . i | n 78
p=l prl ; s (78)
1
Note however that when solving e, he olde constraint (749)
must be taken intce account aod -~hat, it several values satisfy
equation (78), the one that winimiaccy the tunction (76) must be
retained. Standard techniques can be ¢mployed to deal with such
a simple one-dimensionai problen (sce c.op. 17 1),

In many cases, as previously ment:encd, at least one ol the
terms in the summation .n p iu (7o and {78) disappears, and
it is possible to treat the problem anciytically., As an illus-
tration, consider again the case ol a tlat shell element, where
the term in p = 2 its missing. Problem 176) exhibits then the
form (omitting the todex i)
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On the other nand, 1L 1= casily scoen frum (77) that
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1 {p
Rt :1fl (86)
k PO AN

Regrouping terms, it on rinally he concluded that the terms of

the hessian matrix «re glven by

b 3
. pl ~=1-p E -l-p
g g, poest At TPy pop S R
1 p= 1] 1 p=1 1k 1 .
He, = = L —rmeeee— — (87)
jk LA 3 (p) “2-p
, (p+1) o, a.”
= i i
where the summation on 1t i3 restricted to the n active primal
variables, that is, thoge that are not iixed to o lower or an
rd .
- i . . . .
upper limit (of course Pt Q0 ftor a passive vartable). Knowing
. k . . .
the gradient (73) and the hessian matrix (87) furnishes the
Newton search directioen
-1

2 = - H o (88)

The next dual point is then =iven by
+ )

r = b (849
where 1 1s the step loeve.lh cab-n alen. tne direction /. Mot
often a regular Newtow oo Wl sl {0 on (BY)Y) is ose--
lected, however, the vaiuc ot . 0,0 ¢ sotimes be lowered to
prevent one of the dual variabhle . 1row becoming negative [ 6 ],

The second order dual optimizir lopiemented in SAMCEF | I8
has been esmnecially devised so that 1t <veoks the maximum ot the
dual functivn by operating in a scquenie of dual subspaces with
gradually increasing dimensiocn., e this way, the effective di-
mensionality of the wasimization problew never exceeds the num-
ber of active hehavicr onstiaints, which correspond to non-
zero dual variables. lPant experience with thin walled structures

indicate that this unumber 1. relatively small in practice, which

explains the remarkable effliivncy of the dual method |6 ] ot




generalized optimallty criterion

The bastc secoud ovrder dad™ i

11, 8 ] emploved an ecxact Linc sl

» . . N . .
1 that maximizes the dual tuncti

b S approach.

beoarltan, *tirst introduced in
b tind the step lenyth

i lung the search direction.

Subsequentivy the ulgorithm as moditiced by introducing a simpli-

fied line search procedure whe

most of the time. A detalled e

can be found in Ret [ o | . The 1

treatment of explicit cunstra,nte
milar. The only difterences 1.
variables in terms ot tite duar o
the tormula emploved for the i,

should however be recognized Ui
vecur due to the lack ot cuonvesrt
(69). Indeed it 1s possible tioat
primal variable suddenly juuaps v
to a tree value when the dual var
This phenomenon, which means that

vatives are discontinuous alony =

tigation.

nni L osten Jength 1s adopted
croption of this algorithm
¢t version, including the
ot the torm (69) 1s very si-
the wor of computing the primal
rubies | see Eqs (76,78)] and
Al miafiex | see b (87)]). It
cnnerical difficulties might
v tothe explliclt constraints
*he sciution of kEq (76) tor a
v d tixed lower or upper bound
lables dre slightly modified.
the duyal function first deri-
"

e surfaces, needs more 1nves-—

O

e p————— =

o

At e wmida




6. NUMERICAL APPLICATIONS

All the e¢xamples presented 1nvolve rather sophisticiated
flat shell elements that are characterized by a displacement
field cubic in extension and quintic in flexion (hybrid qua-

drangular flat shell) |18 ).

6.!1. Cantilever Beam with End Moment

The first example is concerned with a cantilever beam Jloaded
with a concentrated moment at its free end | see Fig. 2 ]. This
problem has been previously solved numerically by PRASAD and
HAFTKA |19 ] using an extended interior penalty function for-
mulation for a beam haviug the following properties : length =

1 in, applied moment = 540 in.lb , Young's modu-

i

10 in, width
lus = 107 psi, Poisson's ratio = 0.3 and mass density = 0.3 lb/ing.
There exists also an analytical solution, which was obtained by
HAUG | 20 }. The analytical optimum design for a displacement

limit of 0.5 in at the free end and specified allowable stresses

of 30,000 psi is as follows (see Fig. 2) :

1

0.30 for 0 < x < 2.3 (90)
1/4

a(x)

0.244 x for 2.3 < x < 10 (91)

a(x)

It is worth noticing that the beam being statically determinate,
the redesign relation (31) is exact (with p = 3) and reduces to
(90, 91). Therefore the optimal solution should be generated

after one structural analysis only.

The structure is discretized using 20 quadrilateral plate
bending finite elements as indicated in Fig. 2. There is no
design variable linking and the problem involves thus 20 inde-
pendent design variables. The problem was first solved by using
the cubic expansions (25) with p = 3 and the dual algorithm des~
cribed in section 5. As previously stated, because the structure
is statically determinate, the explicit problem (68~70) is cxact
and the optimum design is obtained in one single analysis what-

.. . o
ever may be the initial thickness a . Then, the same example




was again solved bv using the liacar expanslion %) wirh an i
Lial thicknvess a4 © U.o in , resclting in an approximate exp
problem of rhe form (l4a-16). The lterdatlon history 1s piven
Table 1. It can be seen thoet ,2aiprisiunly enough, the use o
simple linmear expansiovus gilves rise to satisfactory results.

The two final designs obtatned are listed in Table 2, to
ther with the analytical solution corresponding to Eqs. (90,
and the numerical results ot Wl Y. A clouse agreement b
ween all the final opt mal Jdosions can be cbserved.

6.2. Simply Supported >qudre iiate

The second example consi.t . 1 minimizing the weight of the
simply supported square plate wnown on Fiy, 3. It 1s subjected
to a4 concentrated load of J0OUD k. it 1ts center, where the de-
flection is limited to 0.0/ m. vy svmmetry only a quarter of
the plate has to be analyveed. rhe mesh 1nvolves 25 plate ele-
ments and 175 degrees of ftrecdom. ihe wmaterial propertlies are
as follows : Young's modulus t - A.iul“ x«m:, foisson's ratio
v = 0.3 and weight density . - 7t L. ni. "he dimensions of
the plate are 10 m b: 0 m. The cuttial thickness 1s a® = 0.05u
and the minimum thickness is U.00. 5.  H¢cause the problem in-
volves only one behavior con-tvaive, the roedestyn relations (31)
caun be applied with p = 5. L wie ¢ , the structure belng stati-
cally itndeterminate, theyv mu.t voempi wod recursively., The
iteration history data are ! ¢ 3o sahie 5 oand the tinal desipn
is illustrated in Fig. 3. It i+ wetth sointing out that only
J0 reanalyges are sufficient . . nerate a nearly converged so-
lution, while in a similar problem solved in Ref [ 12 ] by usiap
p = 2 in the redesign relations (31), almost 50 iterations were :

required.

6.3. Simply Supported ‘quare Plite with Frequency Constraint

the supported

Ref | 21

Attention is now tocused on simply square

This example 1s taken from | and i

shown in Fig., 4.

highwpvflCCLiOn Constraint

ni-
Jicit
in

f

e
91) I

et-

plate

t is
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concerned with the minimum weight design of the plate subject

to a natural frequency constraint. The dimensions of the plate
are 10 in by 10 in and its material properties are Young's mo-
dulus = 30 x 106 lb/in2 and Poisson's ratio = 0.3. In Ref [21 |
it is stated that the uniform plate with 922 = 1400 1is taken as
the initial estimate to the optimization problem, where p is the
mass density and w,the minimum fundamental frequency. Therefore,
in the present study, assuming steel material with mass density

p = 0.283 lb/in3, the minimum frequency was chosen as v = w/2 1 =

11.2 Hz. Iteration history data are presented in Table 4 for

three cases differing by the minimum thickness comnstraint (a = 0.1,
0.05 and 0.001 in). The initial design in cases | and 3 corres-
ponds to a uniform thickness a® = 0.2 in, while in case 2, a’
equals 0.12 in. Final vuesigns are illustrated in Fig. 4. By
symmetry only a quadrant of the plate has to be analyzed and
designed. It can be otserved that the design obtained in Ref

{21 ] is different from the design achieved in this study (case 1).
However both designs have about the same weight (0.765 1lb and

0.752 1b). It is also worth pointing out that the design of plua-
tes in bending is an analytically difficult problem, leading to
multiple local optima and suggesting that the optimal plate should

be made up of an infinite number of stiffeners |22 .

6.4. I-beam Structure

The third example involves the I-beam structure schematized
in Fig. 5. The problem consists in minimizing the weight ot the
beam while imposing lower bounds on the frequencies of the three
first eigenmodes : flange flexion, torsion and web flexion. De-
tailed data can be found in Ref. [2 ]. 1In a first optimization
exercise, a pure membrane model was employed. It involves 35
second degree displacement elements, including 10 fictitious

diaphragms (without masses). These dummy members are introduced

to obtain a satisfactory representation of the torsional mode.

Only 5 analyses are sufficient to generate an optimum design for

this membrane model.
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However, when this f{inal design was analvzed by using a more
accurate model made up of flat shell c¢lements, the torsional fre-
quency (mode 2) was seen to be violated by [U 7. Thercfore the
prublem was again solved with this newmadel, by *c¢sorting to the
theory proposed in section 4.3 and to the dual optimizer descri-
bed in section 5. Iteration history data arc illustrated in
Fig. 5 and the final designs are wiven in Table 5 for both finite
element models of the I-beam, It can be seen that the use of
flat shell elements, although vielding slower convergence, glves

satisfactory results.

6.5. U-beam Structure

In an attempt to consider a case where both flexlion and ex-
tension loadings play an equally important role, the U-beam
structure deplcted in Fig. 6 was optimized. The 2000 kg load
acting at the tipproduces torsion of the beam. As a result the
upper flange behaves mainly in flexion, the web, in extension,
and the lower flange, both in flexion and extension. For sim-
plicity, only displacement constraints are considered : the tip
deflection is limited to 0.! m, while the relative lateral dis-
placement 1s limited to 0.005 m (see Fig. 6). Three different
methuds are employed, which ditfer by the explicit approximations

used for the displacement constraints

[

case 1 ¢ full expansion (3i), vielding problem (68-70) with

p = | and 3 onlv (the terr in p = 2 being zero)
case 2 : linear expansion (25 witiu p = 1), vielding problem
(l4-16)
case 3 : cubic expansion (25 with p = 3).

Ihe iLteration history data arce given in Table 6 and the final

designs i1n Table 7.

It 1s interesting to notice that the three methods pive

similarly pood results, which suppests that the use of simple

I~
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linear Taylor series expansion in terms of the reciprocal design
variables might be a good strategy for most of the structural
optimization problems. This idea was previously stated by AUSTIN

[23 ], but not believed valid by many people when he published

his paper !
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7. CONCLUSIONS AND RECOMMANDATIONS
bt is now widely recognized that a powerful and rather ge-
neral approach to structural optimization is achieved by repla-
cing the original problem with a sequence of explicit approxi-
mate problems. This approach was initially conceived for thin
walled structures modelled by buar und membrane finite elements,
as well in the context of optimality criteria techniques as 1In
the framework of mathematical programming methods using approxi-
mation concepts. It has been extended in this work to deal with
structural systems made up of beam, pluate and flat shell elements,
with behavior constraints placed on displacements, stresscs, ni-
tural frequencies and criticual buckling loads. The method pre-
sented uses a second order dual algorithm to solve each explicit
subproblem. The convergence properties are independent of the
number of design variables, which is typical of optimality cri-
teria types of approach as well as linearization techniques In
mathematical programming. As a result large structural systems

can be treated at the expense ot a few finite element analvsces.

Several difficult points remain to be clarified. First it
is not well known whether the explicit problem can be solved
conveniently in any case, because 1ts lack of convexity mipht
lead to discontinuity in the duai function gradient. Secondly,
the use of simple linear expdansions with respect to the recipro-
cals of the element transverse sizes, glves rise to satisfactory
results in many cases. This suggests that more complicate expli-
cit approximations such as those proposed in this work might not
be necessary. Finally, there remains the question of the stress
constraints, for which it is difficult to generate adequate¢ first
order explicit approximations. Also stress~-ratioing algorithms
should be considered for extension-{lexion elements, because they

correspond to much more inexpensive zero order approximations.
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Table | ILteration History Data tor Cantiiewvenr Beam
e e - e e e e .
Analysis l Linear kExpansicn Cubilc kLxpansion
No . Weight Deflection weight | petlection
(1lb} (in) (1b) (in)
| - o
] El.SOUU L2147 1.5000 0.2147
2 1.0797 0.4996 U.49938 0.6715
3 1.0797 0.5000 1.0660 0.5768
4 ' 1.0760 0.5104
5 ? 1.0764 0.50906
b ; [.0766 0.5091
7 ; 1.0767 0.5088
3 | 1.0768 0.5084
I1BM 370-158
92 255

'CPU time
 (sec)

L

|
|
J

|
|

e i




Table 2 Final Designs for (antilever Beam
Element Thickness (in) 1
No. Analytical Ref [ 19 ]} lLinear Cubic !
Ref | 20] Expansion Fxpansion i
1
1 0.3 0.3004 0.3 0.3 '
2 0.3 0.3006 0.3 0.3
3 0.3 0.3018 0.3 0.3
4 0.3 0.3056 0.3 0.3 !
5 0.3 0.3109 0.3 0.3 |
6 0.3142 0.3167 0.3167 0.3136 ;
7 0.3276 0.3231 0.3287 0.3270 !
8 0.3396 0.3298 0.3327 0.3389 !
9 0.3503 0.3367 0.3350 0.3497
10 0.3602 0.3437 0.3379 0.3596
11 0.3693 0.3508 0.3450 0.3687
12 0.3778 0.3579 0.3574 0.3771
13 0.3858 0.3652 0.3711 0.3851
14 0.3933 0.3726 0.3851 0.3926
15 0.4004 0.3803 0.3989 0.399¢6
16 0.4071 0.3881 0.4121 0.40613
17 0.4135 0.3960 0.4246 0.4126
18 0.4197 0.4040 0.4358 0.4182
19 0.4255 0.4119 0.4446 0.4225
20 0.4312 0.4197 0.4533 0.4268
Weight 1.0750 1.0453 1.0768 1.0797
(1b)
No. of / ? 8 2

Analyses

N




lable 3 Iteration History Data tor Square Plate with

Deflection Constralint

Analysis Welght (ky) Deflection (m)
No.
1 9750 0.02029
2 B756 0.001602
3 7799 0.001892
4 7590 0.001958
5 7462 0.001960
6 7358 0.001964
7 7274 0.001980
8 7231 0.001(989
9 7206 0.001990
10 7180 0.001989
[BM 370-158
CPU time 250
(sec)




Table 4 Iteration History Data foir Square Plate
with Frequency Constraint
Analysis Casel : a=0.lin | Case2:a=0.051in]| Case 3 :a=20.001lin
No. Weight |Frequency | Weight | Frequency | Weight | Frequency
(1b) (Hz) (1b) (Hz) (1b) (Hz)
1 1.415 19.6 0.849 11.8 1.415 19.5
2 1.097 16.0 0.786 11.5 1.097 16.0
3 0.913 13.6 0.750 1.5 0.902 13.7 !
4 0.812 12.2 0.708 b1.7 0.778 1204 !
5 0.771 1.5 0.658 1.6 0.696 1.y |
6 0.757 (1.3 0.631 1.4 0.647 1.s |
7 0.753 1.2 0.617 11.3 0.622 1.4 é
8 0.752 11 2 0.605 (1.3 0.604 Pi.4
9 0.752 1.2 0.596 11.3 0.588 1.4
10 0.589 11.3 0.574 11.73
11 0.583 11.3 0.559 11.4
12 0.577 11.3 0.542 1.4
13 0.521 11.3
IBM 370-158
CPU time 218 276 307
(sec)
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Table 5 : Final Designs for [-beam Structure

membrane model
thickness (mm) t
flat shell model

Upper Flange

15.80 17.30 11.67 6.143 .81 ¥
16.59 15.09 10.08 090 1,363 :

e ——— e
B o ——

(Wat

s ———

Web

g 5.101 3.602 3.329 3.294 1.997 w

vV

o 2.056 4.173 3.965 3.936 2,313 | F

o
2 o L r
r.
Supported

Lower Flange :
[5.40 {7.01 FH.55 6.074 .79 |
20.51 17.98 12.21 6.480 1.910 j
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Table 7

Final Designs for

U-Beam Structure

Case | Full Expansion
fhickness (mm) Case 2 Linear Fxpansion
case Cubtc Expansion
1 [ T 1
21.6 16.6 10.9 6.00 2.29
Upper ! ) i
21,2 0 Noe.a P qir.2 0 belst o, {2027
Flange ! ' ; ,
21,2 : 16.4 : 10.38 ; 5.82 \ 2.39
1 ! - Lo
) 1 i [ -
14.5 11.8 1 8.61 , $.503 1271 Free
] i
Web 6.0 0 firar o {soes {2700 | knd
) [ '
17.0 ¢+ |13.8 | 9.96 [o.00 ! [27.1
) '
1 ¢ L 1
T ) T i —_——
lLower 24.6 22.5 v {19.4 23.5  ,417.9
Flange [{25.0 . {23.4 {20.6 | }23.6 ti7.
23.0 v (20,7 v |18.2 | [22.8 '[17.9
i 1 { [




«— - -real restraint surface
V- -approximate restraint surface
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\
L)

FIG. 1 COMPARISON OF REAL AND
: APPROXIMATE RESTRAINT SURFACES
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